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Abstract: RGB-D cameras such as Microsoft's Kinect have found many application areas in robotics, 3D modelling and 

indoor vision due to their low-costs and ease of use. 3D reconstruction with RGB- 

D cameras is relatively more convenient because they provide RGB and depth data simultaneously for each 

image element. However, for a full 3D reconstruction of a scene, a single fixed RGB-D camera is inadequate 

and using multiple cameras brings many challenges with them, such as bandwidth limitations and 

synchronization. To overcome these difficulties, we propose a solution that employs mirrors to introduce 

virtual RGB-D cameras into the system. The proposed system does not have any space limitations, data 

bandwidth constraints, synchronization problems and it is cheaper because we do not require extra cameras. 

We develop formulations for the simultaneous calibration of real and virtual RGB and RGB-D cameras and 

we also provide methods for 3D reconstruction from these cameras. We conduct several experiments to assess 

our system; numerical and visual results are found satisfying.

1 INTRODUCTION 

RGB-D cameras such as Microsoft's Kinect sensor 

have recently found many application areas in 

robotics, 3D modelling and indoor vision due to their 

low costs and ease of use. Specifically, these cameras 

make the 3D reconstruction of objects more 

convenient because they provide RGB and depth data 

for each image element simultaneously without any 

further process. As RGB-D cameras became more 

reachable, many studies started to appear (Smisek et 

al., 2013; Henry et al., 2012; Khoshelham et al., 2012) 

that reconstruct 3D models to be used by ordinary 

users. Public software libraries (Izadi et al., 2011; 

Rusu et al., 2011) are now offered to build custom 3D 

reconstruction software from RGB-D data. 

In spite of their convenience, for some cases, a 

single view of an RGB-D camera is not sufficient to 

capture the whole 3D scene at the same time for a full 

reconstruction (Izadi et al., 2011; Henry et al., 2012; 

Canessa et al., 2013; Oliver et al., 2012). With a 

single depth map from a fixed RGB-D camera, only 

visible surfaces can be reconstructed which is 

inadequate for many applications. One can  utilize 

multiple RGB-D cameras to capture the scene from 

several viewing locations so that almost all scene 

surfaces are visible to RGB-D cameras, hence a full 

3D reconstruction is possible (Henry et al., 2012; 

Canessa et al., 2013; Oliver et al., 2012; Lai et al., 

2011).  

However, using a system containing multiple 

RGB-D cameras may not be practical due to several 

problems. First, obviously, additional RGB-D 

cameras in a 3D reconstruction system will increase 

the total cost which makes the system less affordable. 

Second, simultaneous communication with 

multiple RGB-D cameras has communication 

channel bandwidth problems. Therefore, customized 

hardware is required to capture data from multiple 

RGB-D cameras simultaneously which is both 

expensive and requires expert knowledge (Hossny et 

al., 2012). For example, communicating with more 

than one Kinect, which is the most popular RGB-D 

camera among ordinary users, cannot be done on a 

standard personal computer or laptop on a single USB 

bus without additional peripherals (Sumar et al., 

2011). This is because Kinect contains two separate 

cameras (RGB and depth cameras) which take all of 

the available USB bandwidth. Neither USB 2.0 nor 

3.0 controllers are capable of supporting more than a 

single Kinect on a single bus (Sumar et al., 2011). 

This is a serious limitation that prevents employment  
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Figure 1: (a) The test system consists of an RGB-D and an RGB camera observing a test object and its reflection from a 

planar mirror. (b) Imaging of a round test object with real and virtual RGB-D and RGB cameras. 



of multiple Kinects on a standard personal computer. 

There are additional challenges for multiple RGB-D 

cameras. Minimum depth sense limitations of the 

RGB-D cameras is one of these difficulties and there 

are many applications in which this limitation results 

in a system failure. For example, reconstructing the 

3D structure of a scene is very common for narrow 

indoor areas such as elevators or industrial production 

lines.  More specifically, in industry, reconstructing 

the 3D structure of a product or package on a mass 

production line is crucial for detecting manufacturing 

defects. Multiple RGB-D cameras can be used to 

construct the 3D structure of the package and detect 

defects on it. However, camera minimum depth sense 

range (50 cm for the Kinect) is quite restrictive for 

covered production lines and elevators (Canessa et 

al., 2013; Oliver et al., 2012). In the covered 

production line case, one can barely fit a single RGB-

D camera to inspect products on the conveyor belt. As 

a result, using multiple cameras for such applications 

are prohibitive because of the limited space. 

Another interesting problem with multiple RGB-

D cameras is due to their active sensing technology. 

All practical RGB-D cameras project infrared or laser 

light to the scene to estimate the depth values. In the 

multiple RGB-D camera case, each camera projects 

its own patterns to the scene. These patterns are 

accumulated on the overlapped scene surfaces, which 

causes interference problems among these patterns. 

This interference adds serious amount of noise to the 

final depth values (Schröder et al., 2011; Butler et al., 

2012).  

To overcome the mentioned difficulty, some 

techniques have been developed. Schröder et al. 

(2011) proposed a system of synchronized Kinects 

which enables each Kinect to capture only its own IR 

dot pattern. They used a fast rotating disk in front of 

each IR projector so that only one Kinect would 

project its IR dot pattern to the scene at a given time.  

Another interesting solution is Butler et al. (2012). 

The idea behind the system is to physically vibrate an 

RGB-D camera using vibration motor. Both IR 

projector and IR camera of the camera move in 

harmony which means that depth sensing works as 

normal with a little blur. However, IR dot patterns of 

other cameras are sensed blurrily and hence are 

neglected by other cameras. Therefore each depth 

camera can sense the depth of the scene almost 

without noise. 

In this paper, we propose a novel method to 

address the above problems for the 3D reconstruction 

of a scene using a single or multiple Kinect cameras. 

We utilize mirrors to create virtual RGB-D cameras 

so that more views of a scene would be visible from 

real and virtual RBG-D cameras (Fig.1(a) and Fig. 

1(b)). We define the image of the scene from the 

mirror as a virtual camera image. For example, in Fig. 

1(b), the left side of the test object (orange region) can 

be reconstructed using real RGB-D camera, but the 

right side of the test object (blue region) is not visible 

from the real cameras. By placing a mirror behind the 

test object, we can extract depth data of the blue 

region which lets us successfully reconstruct 3D 

structure of the object without additional cameras. 

Since each mirror introduces a different view into 

the system, a more complete 3D reconstruction of the 

scene can be achieved without any bandwidth, 

synchronization, cost, and space limitation problems. 

Our method captures the scene images from the same 

RGB-D camera, so it uses the same communication 

channel for real and virtual camera views. This means 

that our method does not need additional bandwidth 

for the virtual scene views. Since there is only one 

RGB-D camera in the system, we do not have any 

synchronization problems between camera capture 

times. Adding a planar mirror into the scene is much 

less expensive than adding more cameras. As a result, 

our solution is less expensive and it is more practical 

because adding a planar mirror into the scene can be 

done by just hanging a mirror on a wall without any 

need for more depth space. Fig. 2 shows an example 

configuration for such an application for a covered 

production line. Note that placing a second RGB-D 

camera on the location of virtual RGB-D camera is 

impossible due to minimum depth sense range 

restrictions.  

 

 

 

 

Our method does not address the pattern 

interference problem, but it can be addressed by  

Figure 2: Covered Production Line.  

 



 
 

Figure 3: System overview of data flow and main processes 
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methods introduced by (Schröder et al., 2011; Butler 

et al., 2012). Finally, our method can also be used 

with multiple RGB and RGB-D cameras if needed 

(Fig. 1-b). 

There are other work that use mirrors with RGB 

cameras to reconstruct observed scenes (Nene et al., 

1998; Mariottini et al., 2012). They build 3D structure 

of a scene using Structure from Motion and Stereo 

techniques. However, these methods are strictly on 

RGB images and they do not develop any solutions 

for the problems of RGB-D data such as calibration 

and registration of depth images. 

Using mirrors with RGB-D cameras is not a new 

idea. There are attempts at using both Kinect and 

mirrors but these studies are very informal (Kinect vs. 

Mirror, 2010). They do not develop any algorithms or 

formulations for the 3D reconstruction of scenes. 

Our main contribution in this paper is enabling 

users to obtain a more complete 3D reconstruction of 

an object from a single real depth image. Using a 

proper configuration of mirrors and a single Kinect, 

one can accomplish 3D reconstruction of an object 

utilizing proposed method. We develop and test 

algorithms for the simultaneous calibration and 

registration of real and virtual RGB-D cameras. We 

also describe methods for the full 3D reconstruction 

of the scenes using the developed calibration 

techniques. Although multiple calibration pattern 

images with different positions and orientations can 

be used to calibrate the proposed system, utilizing a 

single image is found sufficient for the calibration 

procedure. Furthermore, we used an external high 

resolution RGB camera to capture high quality 

images for texture mapping of the reconstructed 3D 

structure of the object. 
The rest of this paper is organized as follows: In 

Section 2, we give an overview of our method. In 
Section 3, we describe the calibration/registration 
procedure between the RGB-D camera and RGB 
camera. We then explain RGB-D camera - virtual 
RGB-D camera calibration process. In Section 5, we 
discuss experimental results of the proposed method. 
Finally, we provide concluding remarks in Section 6. 

2 METHOD OVERVIEW 

The main processes and the data flow of the proposed 

system are shown in Fig. 3. Our systems begins with 

capturing the RGB-D images of the scene with test or 

calibration objects. We then calibrate the RGB-D 

camera using standard calibration procedures. Next, 

the direct and the reflected image sections of the 

RGB-D image are segmented as real and virtual 

RGB-D images, respectively. The calibration and 

registration of the real and virtual images is followed 

by the 3D reconstruction of the scene.  
RGB-D cameras such as Microsoft's Kinect 

cannot produce high quality RGB images because of 
their low resolution and low quality lenses. In order 
to increase the texture quality of the reconstructed 3D 
scene, we used an external high resolution RGB 
camera along with the RGB-D camera (Fig. 1(b)). In 
other words, we acquire depth data from the RGB-D 
camera and color data from the external RGB camera. 
So, we have four cameras in total; two of them are 
real, two of them are virtual. Calibrating these four 
cameras enables us to reconstruct the 3D scene with 
a better texture mapping quality. 

3 CALIBRATION AND 

REGISTRATION 

The first step of our method is constructing a test area 

which is surrounded by single or multiple mirrors. We 

place a calibration pattern on a location which is 

visible from both RGB-D camera and external RGB 

camera (Fig. 4 and Fig. 1(a)). Then, we calibrate 

intrinsic and extrinsic parameters of the real RGB-D 

camera and the real RGB camera using the method of 

Zhang (2000). Next, we perform registration between 

the RGB-D and the external RGB camera using a 

method similar to (Jones et al., 2011). Finally, the 

registration between the real and virtual RGB-D 

cameras is established. Note that intrinsic parameters 

of the virtual RGB-D camera and the virtual RGB 

camera are identical with the real counterparts, which 

makes the overall calibration of the system easier 

compared to calibration of multiple real cameras. 

Next two subsections describe the details of the 

calibration and the registration processes. 

 

3.1 RGB-D AND RGB CAMERA 
CALIBRATION 

In order to compute the transformation between the 

real RGB-D camera and the real external RGB 

camera (Fig. 1(b)), we used the standard calibration 

pattern (Fig. 4). There are total of 48 calibration 

corners for a calibration pattern. For a given 

calibration corner point C =  [X, Y, Z ]T, the RGB-D 

camera produces a 3D vector [xk, y
k
, zk]

T
 in the 

camera coordinate space. The image coordinates of 

  



 

 

 

the point C on the image plane of the RGB-D camera 

can be obtained by 

 

[xkp, y
kp

,1 ]
T

 =  
1

zk

 [xk, y
k
, zk]

T
, (1) 

 

where [xkp, y
kp

] is the image point of C on the RGB-

D camera. 

We define the intrinsic matrix of the RGB-D 

camera as, 

K = [
fx 0 cx

0 fy cy

0 0 1

]. (2) 

The point C is projected on the RGB-D camera's 

image plane by 

[

xk

y
k

zk

]  = K [
X

Y

Z

]. (3) 

Multiplying both sides with K-1 will lead, 

K-1 [

xk

y
k

zk

]  = [
X

Y

Z

]. (4) 

We multiply both sides with 
1

zk
 then the equation 

becomes, 

K-1 [

xkp

y
kp

1

]  = [

X/zk

Y/zk

Z/zk

]. (5) 

Using the above equation, one can reconstruct the 

scene whose depth data is acquired from RGB-D 

camera. 

Since we know K-1 and [

xkp

y
kp

1

], we can compute 

[X/zk Y/zk Z/zk ]T. 

Moreover, as Zk is already known from the RGB-

D depth data, the scale factor zk is easily extracted 

which enables us to compute [X, Y, Z ]T.  

Let [xr, yr
]

T
be the image of point C on the RGB 

camera. At this point, we have a set of [X, Y, Z ]Tand 

[xr, yr
]

T
correspondences which is required to 

compute projection matrix between the real world 

coordinates and the RGB camera. We compute this 

projection matrix using the Singular Value 

Decomposition (SVD) method.  

3.2 RGB-D AND VIRTUAL RGB-D 
CAMERA CALIBRATION 

In order to compute the transformation between the 

real and virtual RGB-D cameras (Fig. 1(b)), we used 

a two-sided calibration pattern whose corners are 

projections of the same 3D point for all cameras (Fig. 

4). 

Without loss of generality, we assume that the 

camera reference frame of the real RGB-D camera is 

the same as the world reference frame. Let 

[X, Y, Z ]T be the coordinate of the calibration 

pattern corner C in RGB-D camera reference frame. 

Let [Xv, Yv, Zv ]T be the coordinate of C in virtual 

RGB-D camera reference frame. We can compute 

[Xv, Yv, Zv ]Twith the method mentioned in the 

previous subsection (Eq. 5).  

C = [X, Y, Z ]Tand Cv = [Xv, Yv, Zv ]T vectors 

refer to the same calibration pattern corner in 

different reference frames; real and virtual RGB-D 

camera reference frames, respectively. This is 

because we used a two-sided calibration pattern to 

capture the calibration points (Fig. 5). Hence the 

transformation between the reference frames of the 

RGB-D and the virtual RGB-D camera can be 

computed utilizing these correspondences.  

We follow the procedure described by (Besl et al., 

1992) to calculate the rotation matrix and the  

1 32 . . .

. . .

Real RGB-D 
Image Region

Virtual RGB-D 
Image Region

Calibration 
Pattern 
Corners

1 2 3

Figure 4: Real and Virtual camera images of the 

calibration plate. The lines show the correspondence 

between the real and virtual pattern corners. 



  

  
 

Figure 5: RGB-D camera's RGB image (top-left), RGB-D camera's depth image (top-right), external RGB image 

(bottom-left) and current workspace mask (bottom-right). 

translation vector between the reference frames of 

real and virtual RGB-D cameras. Let Cen be the 

centroid of the corners points of the RGB-D camera. 

Similarly, let Cenv be the centroid of the corner points 

of the virtual RGB-D camera. 

Cen = 
1

N
∑ CiN

i=1 . 

Cenv = 
1

N
∑ Cv

iN
i=1 . 

(6) 

Where Ci and Cv
i  are the i

th
 corner points of the real 

and virtual cameras, respectively. N is the number of 

points in the point set. 

 

We accumulate point-centroid distances in the 

3x3 matrix H, 

H = ∑ (Ci - Cen) .N
i=1 (  C

v

i  - Cenv )
T
, (7) 

where . represents matrix multiplication. By 

decomposing H using SVD we obtain, 

[U,S,V] = SVD(H). (8) 

The rotation matrix R can be computed as, 

R = VUT, (9) 

and translation vector T can be computed using, 

T = -R Cen + Cenv. (10) 

Now, we have R and T between RGB-D and 

virtual RGB-D camera reference frames. To 

transform a 3D point from the RGB-D camera 

reference frame to the virtual RGB-D camera 

reference frame, following formula can be used 

Cv = RC + T. (11) 

4 RECONSTRUCTION 

In the 3D reconstruction phase, we first acquire the 

depth image from the RGB-D camera. RGB images 

are obtained from both RGB-D and external RGB 

cameras. In order to determine which regions of 

images belong to the real scene and which belong to 



 

the virtual scene (mirror regions), we place markers 

on the borders of the mirror frame (Fig. 5). We locate 

marker positions on the RGB image of the RGB-D 

camera. As we have already registered the depth and 

the RGB cameras of the RGB-D camera, we can 

transform pixel coordinates of the markers from RGB 

image reference frame to depth image reference  

frame. Then, we get the depth value of the markers. 

The surface points whose depth values are lower than 

marker's depth value are assumed to belong to the real 

scene and others are assumed to belong to the virtual 

scene, which are actually reflections of the real 

objects on the mirror. After separating real and virtual 

surface points, we reconstruct the real surface points 

using eq. (5) and build a point cloud with these points. 

We achieve reconstruction of virtual surface points 

via the same technique that we use for the real 

surfaces. Next, we transform the reconstructed virtual 

surface points from the virtual RGB-D camera 

reference frame to the real RGB-D camera reference 

frame using Eq.11. Finally, we merge the transformed 

virtual surface points with the point cloud constructed 

using the real surface points. Overlapped regions 

which are visible from both real and virtual RGB-D 

cameras are not specially treated, which means that 

for some object sections, there might be more than 

one 3D reconstruction point. After the reconstruction, 

we find the color value of each 3D point using the 

method described in section 3.1.  
 

Table 1: Calibration and reconstruction results 

 Avg Err Std Dev 

Ext. Cam. - Real 

RGB-D camera 
1.68 px 1.21 px 

Real - Virtual 

RGB-D camera 
5.00 mm 2.39 mm 

Real - 

Reconstructed 

distance 

4.21 mm 3.05 mm 

5 EXPERIMENTAL RESULTS 

In order to show quantitative results of our method we 

conducted some experiments. We reconstructed 3D 

points that correspond to calibration plate corners and 

projected these points onto the RGB camera image 

plane to measure the external RGB and RGB-D 

camera calibration error (Fig. 4). The average 

distance between the projected 3D points and 

detected corner pixels (Ground truth) is presented in 

the first row of Table 1 with standard deviation. Next, 

we repeated the same experiment between the real 

and virtual RGB-D cameras. We reconstructed two 

sets of 3D points using the calibration plate corners 

from the real RGB-D camera and the virtual RGB-D 

camera. Then, we transform set of virtual 3D points 

from the virtual RGB-D camera reference frame to 

the real RGB-D camera reference frame to calculate 

the transformation error. The second row of Table 1 

contains the average distance between the 

transformed 3D points and the ground truth 3D points 

and its standard deviation.  
 

  

 
 

  
 

Figure 6: Ground truth measurements (mm) of the test 

object (left), Distances measured by our method (right) 

Finally, we compare reconstructed object size 

measurements with the ground truth object size 

measurements. The ground truth object size 

measurements were obtained by using a standard 

caliper tool on the real world objects. The last row of 

Table 1 shows the average difference between the 

reconstructed distances and the ground truth distances 

with standard deviation. Fig. 6 shows some of the test 

objects used to assess our system. Note that, without 

using our virtual RGB-D camera setup, these types of 

measurements are very difficult to obtain from a 

single depth map image. 

We also provide qualitative results for some 3D 

reconstruction examples in Fig. 7. Left column 

represents RGB image of the objects, middle column 

and right column represent frontal and rear view of 

reconstructed 3D objects, respectively.  

164.2

124.1

25.6



 

6 CONCLUSIONS 

The availability of the RGB-D cameras made the 3D 
reconstruction tasks much easier compared to earlier 
systems. Using multiple RGB-D cameras are now 
becoming more popular for a more complete 3D 
reconstruction. We presented a new method that uses 
RGB-D cameras with mirrors to prevent a number of 
known problems such as synchronization, physical 
space limitations, bandwidth limitations, and inherent 
costs. We provided formulations for the calibration 
and registration of multiple real and virtual RGB-D 
and RGB cameras. We also provided formulations for 
the reconstruction task from the obtained data. Our 
method is capable of producing reconstruction results 
with higher texture quality by employing an external 
high resolution RGB camera. One drawback of our 
method is that, the real and virtual cameras have to 
share the same image space which introduces a 
resolution problem. In addition, the depth noise from 
virtual RGB-D camera will increase due to the 
increased distance. However, this problem will be 
less important as higher resolution RGB-D cameras 
become available. The experiments performed on real 
test objects showed qualitatively and quantitatively 
that our method is very effective in practice. 

ACKNOWLEDGEMENTS 

This work is supported by TUBITAK Project 

112E127. 

REFERENCES 

1. Smisek, Jan, Michal Jancosek, and Tomas Pajdla. "3D 

with Kinect." Consumer Depth Cameras for Computer 

Vision. Springer London, 2013. 3-25. 

2. Henry, Peter, et al. "RGB-D mapping: Using Kinect-

style depth cameras for dense 3D modeling of indoor 

environments." The International Journal of Robotics 

Research 31.5 (2012): 647-663. 

3. Khoshelham, Kourosh, and Sander Oude Elberink. 

"Accuracy and resolution of kinect depth data for 

indoor mapping applications." Sensors 12.2 (2012): 

1437-1454. 

4. Izadi, Shahram, et al. "KinectFusion: real-time 3D 

reconstruction and interaction using a moving depth 

camera." Proceedings of the 24th annual ACM 

symposium on User interface software and technology. 

ACM, 2011. 

5. Rusu, Radu Bogdan, and Steve Cousins. "3d is here: 

Point cloud library (pcl)."Robotics and Automation 

(ICRA), 2011 IEEE International Conference on. IEEE, 

2011. 

6. Canessa, Andrea, et al. "Calibrated depth and color 

cameras for accurate 3D interaction in a stereoscopic 

augmented reality environment." Journal of Visual 

Communication and Image Representation (2013). 

7. Oliver, Ayrton, et al. "Using the Kinect as a navigation 

sensor for mobile robotics." Proceedings of the 27th 

Conference on Image and Vision Computing New 

Zealand. ACM, 2012. 

8. Lai, Kevin, et al. "A large-scale hierarchical multi-view 

rgb-d object dataset."Robotics and Automation (ICRA), 

2011 IEEE International Conference on. IEEE, 2011. 

9. Sumar, Lazar, and Andrew Bainbridge-Smith. 

"Feasibility of Fast Image Processing Using Multiple 

Kinect Cameras on a Portable Platform." Department of 

Electrical and Computer Engineering, Univ. 

Canterbury, New Zealand. 

10. Hossny, M., et al. "Low cost multimodal facial 

recognition via kinect sensors."LWC 2012: Potent land 

force for a joint maritime strategy: Proceedings of the 

2012 Land Warfare Conference. Commonwealth of 

Australia. 

11. Schröder, Y., Scholz, A., Berger, K., Ruhl, K., Guthe, 

S., & Magnor, M. (2011). Multiple kinect 

studies. Computer Graphics. 

12. Butler, D. Alex, et al. "Shake'n'sense: reducing 

interference for overlapping structured light depth 

cameras." Proceedings of the 2012 ACM annual 

conference on Human Factors in Computing Systems. 

ACM, 2012. 

13. Nene, Sameer A., and Shree K. Nayar. "Stereo with 

mirrors." Computer Vision, 1998. Sixth International 

Conference on. IEEE, 1998. 

14. Mariottini, Gian Luca, et al. "Planar mirrors for image-

based robot localization and 3-D 

reconstruction." Mechatronics 22.4 (2012): 398-409. 

15. "Kinect vs. Mirror," 

http://www.youtube.com/watch?v=1Qx8NzuSSJ4 

16. Zhang, Z. 2000. A flexible new technique for camera 

calibration. IEEE TPAMI, 22(11):1330–1334. 

17. Jones, Brett R. Augmenting Complex Surfaces With 

Projector-Camera Systems. Diss. University of Illinois, 

2011. 

18. Besl, Paul J., and Neil D. McKay. "Method for 

registration of 3-D shapes." Robotics-DL tentative. 

International Society for Optics and Photonics, 1992. 

 
 
 



`    

   

   

   

   

   

 
Figure 7: Reconstruction results

 


